fir_test.m 1.95 KB
% -----------------------------------------------------------------------------
%  Copyright (C) 2019-2021 daiteq s.r.o.                http://www.daiteq.com
%
%  This program is distributed WITHOUT ANY WARRANTY; without even
%  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
%  PURPOSE.
%
% -----------------------------------------------------------------------------
%  Filename    : fir_test.c
%  Authors     : Roman Bartosinski
%  Description : FIR filter - reference Octave implementation
%  Release     :
%  Version     : 1.0
%  Date        : 27.4.2021
% -----------------------------------------------------------------------------
%


% Signal generation
sample_rate = 48000;
nsamples = 256;

F = [1 15] * 1000;
A = [1 0.5];

% Time vector - use colon operator to generate integer vector of sample numbers
t = (0:nsamples-1) / sample_rate;

% Test signal - use matrix notation to compose it with single expression
signal = A * sin(2*pi*F'*t);


% FIR coefficient generation
% Choose filter cutoff frequency (6 kHz)
cutoff_hz = 6000;

% Normalize cutoff frequency (wrt Nyquist frequency)
nyq_freq = sample_rate / 2;
cutoff_norm = cutoff_hz / nyq_freq;

% FIR filter order (i.e. number of coefficients - 1)
order = 24;

% Create lowpass FIR filter through a direct approach
% NOTE: fir1, firpmord and firpm all require Signal Processing Toolbox
fir_coeff = fir1(order, cutoff_norm);

% Analyse the filter using the Filter Visualization Tool
%fvtool(fir_coeff, 'Fs', sample_rate)

% Filter the signal with the FIR filter
filtered_signal = filter(fir_coeff, 1, signal);


% Convert to 8-bit integer version
conv_scale = 92

sig8b = int8(signal*conv_scale);

printf("signal = [");
printf("%d,",sig8b);
printf("];\n");

fir8b = int8(fir_coeff*conv_scale);

printf("fir_coeff = [");
printf("%d,",fir8b);
printf("];\n");

filtsig8b = filter(fir8b, 1, sig8b);

printf("filt_signal = [");
printf("%d,",filtsig8b);
printf("];\n");

% filtsig8b is multiplied by conv_scale^2